The Cell Circuitry of Ulcerative Colitis, a New View for a Highly Complex Disease.

Gastroenterology

Division of Immunology and Allergy, Center of Molecular Medicine, Department of Medicine, 17176 Karolinska Institutet and University Hospital, Stockholm, Sweden.

Published: April 2020

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378537PMC
http://dx.doi.org/10.1053/j.gastro.2020.02.019DOI Listing

Publication Analysis

Top Keywords

cell circuitry
4
circuitry ulcerative
4
ulcerative colitis
4
colitis view
4
view highly
4
highly complex
4
complex disease
4
cell
1
ulcerative
1
colitis
1

Similar Publications

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

An organic electrochemical neuron for a neuromorphic perception system.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.

Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.

View Article and Find Full Text PDF

Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!