Alternative splicing and alternative initiation/termination transcription sites have the potential to greatly expand the proteome in eukaryotes by producing several transcript isoforms from the same gene. Although these mechanisms are well described at the genomic level, little is known about their contribution to protein evolution and their impact at the protein structure level. Here, we address both issues by reconstructing the evolutionary history of transcripts and by modeling the tertiary structures of the corresponding protein isoforms. We reconstruct phylogenetic forests relating 60 protein-coding transcripts from the c-Jun N-terminal kinase (JNK) family observed in seven species. We identify two alternative splicing events of ancient origin and show that they induce subtle changes in the protein's structural dynamics. We highlight a previously uncharacterized transcript whose predicted structure seems stable in solution. We further demonstrate that orphan transcripts, for which no phylogeny could be reconstructed, display peculiar sequence and structural properties. Our approach is implemented in PhyloSofS (Phylogenies of Splicing Isoforms Structures), a fully automated computational tool freely available at https://github.com/PhyloSofS-Team/PhyloSofS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2020.01.032 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, University of Kentucky, Lexington, KY 40508.
Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China.
Ecdysozoan worms (Nematoida + Scalidophora) are typified by disparate grades of neural organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct the early character evolution of the nervous system via the exceptional preservation of extinct representatives. We focus on their nervous system as it appears in early and mid-Cambrian fossils.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
Casbene and neocembrene are casbene-type macrocyclic diterpenes; their derivatives play significant roles in plant defense and have pharmaceutical applications. We had previously characterized a casbene synthase, TERPENE SYNTHASE 28 (OsTPS28), in rice (Oryza sativa). However, the mechanism of neocembrene biosynthesis in rice remained unclear.
View Article and Find Full Text PDFYi Chuan
January 2025
Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
Due to the unique geographical features of large numbers, isolated by water and diverse formation histories, islands have become natural laboratories for ecological and evolutionary research. Islands have a high proportion of endemic species and disharmony in representing the species compared with that in the continent, which provides a good opportunity to explore the formation of island biodiversity. In this review, we focuse on island ecosystems and describes the progress of research in island biogeography in recent years from three aspects: formation, maintenance, and loss of island biodiversity.
View Article and Find Full Text PDFYi Chuan
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
Since Darwin's era, speciation has been one of the most central issues in evolutionary biology studies. Understanding the processes of species origin is crucial in deepening our understanding of the formation of species biodiversity, which is essential for their protections. However, speciation research has been challenging due to the rather complex evolutionary histories of many extant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!