Background: Colistin has become a last-resort antibiotic for the management of multidrug-resistant gram-negative bacteria. The disk diffusion test is cheap and easy to perform but may be unreliable for colistin susceptibility testing due to poor diffusion of the large colistin molecule. An improved agar diffusion test would increase the reliability of colistin susceptibility testing. This study aimed to modify Muller-Hinton agar (MHA) to improve colistin diffusion in agar.
Methods: MHA was modified by reducing the agar concentration from 100% to 30% and supplementing with protamine. We tested 60 gram-negative clinical isolates of (N=27) and complex (N=33). Disk diffusion test results were interpreted based on minimum inhibitory concentrations determined by broth microdilution.
Results: The modified MHA yielded the best performance metrics, including 94.7% sensitivity, 100% specificity, and an area under the curve of 0.995 (95% confidence interval, 0.982-1.000), <0.001, at a cut-off point of 13 mm.
Conclusions: A reduction of the agar concentration from 100% to 30% and the addition of protamine improved colistin diffusion in agar and allowed routine colistin susceptibility testing in a clinical microbiology laboratory, but should be handled with caution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054692 | PMC |
http://dx.doi.org/10.3343/alm.2020.40.4.306 | DOI Listing |
iScience
January 2025
School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.
Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar.
View Article and Find Full Text PDFPak J Med Sci
January 2025
Ikram Din Ujjan, PhD Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan.
Objective: To determine the prevalence of antimicrobial resistance (AMR) in isolated from urine cultures of patients with uncomplicated cystitis in Pakistan. Another objective was to analyze and compare the resistance rates of to specific antibiotics, conducting a year-by-year evaluation of these rates to identify trends and changes over the past seven years.
Methods: Retrospective analysis of susceptibility data of isolated from midstream urine culture samples of patients presenting in outpatient department with uncomplicated cystitis, from January 2016 to December 2022 in the section of Microbiology, Liaquat University of Medical and Health Sciences was done.
J Int Soc Prev Community Dent
December 2024
College of Dentistry, Mosul University, Mosul, Iraq.
Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 25, 8200 Aarhus, Denmark.
Background And Purpose: Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to patient-specific DTI for generating anisotropic CTVs.
Materials And Methods: The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from a Danish national DTI protocol with post-operative T1-contrast and DTI imaging.
Small
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!