Background A simulation environment for magnetically-driven, active endoscopic capsules (Abu-Kheil Y, Seneviratne L, Dias J, A simulation environment for active endoscopic capsules. 2017 IEEE 30th international symposium on Computer Based Medical Systems (CBMS), Thessaloniki, pp 714-719, 2017), can perform four main operations: capsule tele- operation, tracking of a specific region of interest, haptic feedback for capsule navigation and virtual reality navigation.Methods The main operations of the simulation environment can be clinically evaluated. In this paper, we proposed a clinical evaluation for the main functions of the simulation environment. There main testing procedures for the navigation strategies are proposed; i) vision-based tele-operation, ii) vision/haptic-based navigation without head control, and iii) vision/haptic-based navigation with head control. The navigation ways can be compared with each other in terms of introduction time, visualization and procedure comfort. Human-subject studies are to be conducted in which 20 students and 12 expert gastroenterologists participated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-24230-5_4DOI Listing

Publication Analysis

Top Keywords

simulation environment
20
active endoscopic
12
endoscopic capsules
12
proposed clinical
8
clinical evaluation
8
environment magnetically-driven
8
magnetically-driven active
8
main operations
8
vision/haptic-based navigation
8
navigation head
8

Similar Publications

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) poses a significant threat to global health, with millions of new infections and approximately one million deaths annually. Various modeling efforts have emerged, offering tailored data-driven and physiologically-based solutions for novel and historical compounds. However, this diverse modeling panorama may lack consistency, limiting result comparability.

View Article and Find Full Text PDF

Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.

Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.

View Article and Find Full Text PDF

Railway bridges with lower beam bottom clearances in windblown sand areas tend to accumulate sand particles on the sides of the beams, which seriously impacts railway safety. To investigate the effect of beam clearance height on wind-sand movement near the surface, and to determine the minimum clearance height for railway bridges in such areas, computational fluid dynamics using the Euler-Euler two-phase flow model was employed to simulate the wind-sand flow field beneath bridges with different heights. The results indicated that as clearance height increased, both the high-speed area above the bridge and acceleration area under the bridge increased, while the turbulence area on the leeward side remained unchanged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!