AI Article Synopsis

Article Abstract

Rice production in recent years is highly affected by rapidly increasing temperatures in the tropical and sub-tropical countries, which threatens the sustainable production in near future. Hence, understanding the heat tolerance mechanism and evolving tolerant varieties is an immense need in the staple crop rice. An experiment has been conducted to identify differentially expressed genes in rice under heat stress conditions by employing a diverse set of 32 rice genotypes that includes reported heat tolerant genotypes Nagina 22 (N22) and Dular. Screening of the genotypes at field conditions during Summer-2018 for reproductive stage heat tolerance (wherein the mean minimum (29.8 °C) and maximum (38.4 °C) temperatures surpassed optimum temperatures (25 °C night/30 °C day) required for rice flowering and grain filling stages) and lab conditions employing thermal induction response (TIR) technique to know the genotype's acquired thermal tolerance revealed that the genotype FR13A (indica landrace) showed highest overall performance for multitude of traits viz., 95.29% of spikelet fertility (SF-%) at field level and 100% seedling survival percentage (SSP) at sub-lethal temperatures under laboratory conditions. The relative performance (under TIR) across all the three traits viz., relative shoot length (RSL) (4.91), relative root length (RRL) (equal to the control) and relative seedling dry weight (RSDW) (6.94) over control is high when compared to the other genotypes under study. However, the highly susceptible genotype PUSA1121 performed with 43.59 of SF%, 73.33% SSP, - 43.59 of RSL, - 36.02 of RRL over control. Hence, these contrasting genotypes were used for molecular analysis for identification of differentially expressed genes by employing 29 heat related gene specific primers. Five genes viz., OsGSK1, TT1, HSP70-OsEnS-45, OsHSP74.8 and OsHSP70 have shown differential expression between the two genotypes. Hence, the genotype FR13A, an 'indica' genotype, can be utilized in heat tolerance breeding programmes as donor parent in addition to the reported 'aus' genotypes, N22 and Dular. To our knowledge this is the first indica genotype identified for heat tolerance. The HSP70s, TT1 and OsGSK1 that proved with differential expression might be used for identification of gene specific InDels and thereby to develop functional markers that help in the marker assisted introgression breeding to develop heat tolerant varieties that can sustain production under dramatically changing climatic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-020-05291-zDOI Listing

Publication Analysis

Top Keywords

heat tolerance
16
differentially expressed
12
expressed genes
12
heat
9
identification differentially
8
heat stress
8
stress conditions
8
tolerant varieties
8
conditions employing
8
heat tolerant
8

Similar Publications

Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored.

View Article and Find Full Text PDF

As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).

View Article and Find Full Text PDF

Editorial: Fungal virulence.

Front Fungal Biol

January 2025

Department of Microbiology and General Biology, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Viamão, Rio Grande do Sul, Brazil.

View Article and Find Full Text PDF

Embryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.

View Article and Find Full Text PDF

The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!