AI Article Synopsis

  • - Comprehensive profiling of mutations in non-small cell lung cancer (NSCLC) is crucial for guiding targeted therapies and improving patient survival, especially in high-incidence regions like Vietnam.
  • - A study involving 350 Vietnamese NSCLC patients identified that mutations in the EGFR gene (35.4%) and KRAS gene (22.6%) were the most common, with notable differences compared to other ethnic cohorts.
  • - The research found that KRAS mutations were more prevalent in males, while EGFR mutations were more frequent in females, and younger patients (<61 years) showed higher rates of ALK and ROS1 rearrangements.

Article Abstract

Comprehensive profiling of actionable mutations in non-small cell lung cancer (NSCLC) is vital to guide targeted therapy, thereby improving the survival rate of patients. Despite the high incidence and mortality rate of NSCLC in Vietnam, the actionable mutation profiles of Vietnamese patients have not been thoroughly examined. Here, we employed massively parallel sequencing to identify alterations in major driver genes (EGFR, KRAS, NRAS, BRAF, ALK and ROS1) in 350 Vietnamese NSCLC patients. We showed that the Vietnamese NSCLC patients exhibited mutations most frequently in EGFR (35.4%) and KRAS (22.6%), followed by ALK (6.6%), ROS1 (3.1%), BRAF (2.3%) and NRAS (0.6%). Interestingly, the cohort of Vietnamese patients with advanced adenocarcinoma had higher prevalence of EGFR mutations than the Caucasian MSK-IMPACT cohort. Compared to the East Asian cohort, it had lower EGFR but higher KRAS mutation prevalence. We found that KRAS mutations were more commonly detected in male patients while EGFR mutations was more frequently found in female. Moreover, younger patients (<61 years) had higher genetic rearrangements in ALK or ROS1. In conclusions, our study revealed mutation profiles of 6 driver genes in the largest cohort of NSCLC patients in Vietnam to date, highlighting significant differences in mutation prevalence to other cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026432PMC
http://dx.doi.org/10.1038/s41598-020-59744-3DOI Listing

Publication Analysis

Top Keywords

actionable mutation
8
mutation profiles
8
non-small cell
8
cell lung
8
lung cancer
8
patients
8
patients vietnamese
8
vietnamese patients
8
vietnamese nsclc
8
nsclc patients
8

Similar Publications

Background And Objectives: A majority of pancreatic malignancies are unresectable at the time of presentation and require EUS-guided fine-needle aspiration or fine-needle biopsy (EUS-FNA/FNB) for diagnosis. With the advent of precision therapy, there is an increasing need to use EUS-FNA/FNB sample for genetic analysis. Next-generation sequencing (NGS) is a preferred technology to detect genetic mutations with high sensitivity in small specimens.

View Article and Find Full Text PDF

Enhanced detection of actionable mutations in NSCLC through pleural effusion cell-free DNA sequencing: A prospective study.

Eur J Cancer

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Background: Inadequate tumour samples often hinder molecular testing in non-small cell lung cancer (NSCLC). Plasma-based cell-free DNA (cfDNA) sequencing has shown promise in bypassing these tissue limitations. Nevertheless, pleural effusion (PE) samples may offer a richer cfDNA source for mutation detection in patients with malignant PE.

View Article and Find Full Text PDF

Introduction: MET amplification (METamp) can be a de novo or acquired resistance driver; however, the definition of METamp that best captures patients who may respond to targeted therapy remains debated. We explored the genomic landscape of METamp NSCLC including degree of amplification, co-drivers, amplicon size, and outcomes to MET inhibitors.

Methods: Hybrid-capture NGS-based genomic profiling from 88,547 tissue and 12,428 liquid NSCLC samples were queried for METamp (copy number (CN) ≥ ploidy + 4, or amplification ratio (AmpRatio; [CN/sample ploidy] ≥ 3).

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Precision oncology (PO) has significantly advanced lung cancer treatment by enabling personalised therapy based on genetic mutations. However, equitable access to molecular testing and targeted therapies remains a challenge, particularly in resource-limited settings such as the Brazilian Public Health System (SUS). To identify the challenges faced by SUS in caring for patients with non-small cell lung cancer (NSCLC) in terms of access to Precision Oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!