Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the sedimentation of colloidal micro-spheres and red blood cells (RBCs) in non-Newtonian fluid - silicone oil with different viscosities. We use digital holographic microscopy (DHM) to obtain volumetric information of the sedimenting micro-objects. Especially, the numerical refocusing feature of DHM is used to extract the depth information of multiple particles moving inside the fluid. The effects of proximity to a flat wall and the non-Newtonian behavior on the sedimenting micro-spheres and RBCs are studied by trajectory analyzing and velocimetry. We observe that for lower viscosity values the proximity effect is more pronounced. The variation rate of the particle falling velocities versus their distance to the flat wall decreases by increasing the viscosity of the fluid. For RBCs, however, the decreasing of the velocity variations have a smoother trend. The experimental results verify the theoretical prediction that, similar to Newtonian case, a correction factor in Stokes' law suffices for describing the wall effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026440 | PMC |
http://dx.doi.org/10.1038/s41598-020-59386-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!