FeO nanoparticles are one of the most promising candidates for biomedical applications such as magnetic hyperthermia and theranostics due to their bio-compatibility, structural stability and good magnetic properties. However, much is unknown about the nanoscale origins of the observed magnetic properties of particles due to the dominance of surface and finite size effects. Here we have developed an atomistic spin model of elongated magnetite nanocrystals to specifically address the role of faceting and elongation on the magnetic shape anisotropy. We find that for faceted particles simple analytical formulae overestimate the magnetic shape anisotropy and that the underlying cubic anisotropy makes a significant contribution to the energy barrier for moderately elongated particles. Our results enable a better estimation of the effective magnetic anisotropy of highly crystalline magnetite nanoparticles and is a step towards quantitative prediction of the heating effects of magnetic nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026106PMC
http://dx.doi.org/10.1038/s41598-020-58976-7DOI Listing

Publication Analysis

Top Keywords

role faceting
8
faceting elongation
8
magnetic
8
elongation magnetic
8
magnetic anisotropy
8
magnetic properties
8
magnetic shape
8
shape anisotropy
8
anisotropy
5
anisotropy magnetite
4

Similar Publications

Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety.

View Article and Find Full Text PDF

The role of childhood activity level in personality development is still poorly understood. Using data from a prospective study following 939 children from age 1.5 to 16.

View Article and Find Full Text PDF

Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential.

View Article and Find Full Text PDF

Food waste (FW) threatens food security, environmental sustainability, and economic efficiency, with about one-third of global food production lost or wasted. Schools play a crucial role in addressing FW, representing lost resources and missed educational opportunities. The present research assessed three interventions to reduce plate waste (PW) in Rezekne City schools, namely (S1) a plate waste tracker, (S2) an awareness and educational campaign, and (S3) organizational changes, including larger plates, extended lunch breaks, and teacher supervision.

View Article and Find Full Text PDF

The extraction and analysis of pitch underpin speech and music recognition, sound segregation, and other auditory tasks. Perceptually, pitch can be represented as a helix composed of two factors: height monotonically aligns with frequency, while chroma cyclically repeats at doubled frequencies. Although the early perceptual and neurophysiological mechanisms for extracting pitch from acoustic signals have been extensively investigated, the equally essential subsequent stages that bridge to high-level auditory cognition remain less well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!