Background: Alzheimer's disease (AD) is a major clinical problem, but there is a distinct lack of effective therapeutic drugs for this disease. We investigated the potential therapeutic effects of zerumbone, a subtropical ginger sesquiterpene, in transgenic APP/PS1 mice, rodent models of AD which exhibit cerebral amyloidosis and neuroinflammation.
Methods: The N9 microglial cell line and primary microglial cells were cultured to investigate the effects of zerumbone on microglia. APP/PS1 mice were treated with zerumbone, and non-cognitive and cognitive behavioral impairments were assessed and compared between the treatment and control groups. The animals were then sacrificed, and tissues were collected for further analysis. The potential therapeutic mechanism of zerumbone and the signaling pathways involved were also investigated by RT-PCR, western blot, nitric oxide detection, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and flow cytometry analysis.
Results: Zerumbone suppressed the expression of pro-inflammatory cytokines and induced a switch in microglial phenotype from the classic inflammatory phenotype to the alternative anti-inflammatory phenotype by inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B signaling pathway in vitro. After a treatment period of 20 days, zerumbone significantly ameliorated deficits in both non-cognitive and cognitive behaviors in transgenic APP/PS1 mice. Zerumbone significantly reduced β-amyloid deposition and attenuated pro-inflammatory microglial activation in the cortex and hippocampus. Interestingly, zerumbone significantly increased the proportion of anti-inflammatory microglia among all activated microglia, potentially contributing to reduced β-amyloid deposition by enhancing phagocytosis. Meanwhile, zerumbone also reduced the expression of key molecules of the MAPK pathway, such as p38 and extracellular signal-regulated kinase.
Conclusions: Overall, zerumbone effectively ameliorated behavioral impairments, attenuated neuroinflammation, and reduced β-amyloid deposition in transgenic APP/PS1 mice. Zerumbone exhibited substantial anti-inflammatory activity in microglial cells and induced a phenotypic switch in microglia from the pro-inflammatory phenotype to the anti-inflammatory phenotype by inhibiting the MAPK signaling pathway, which may play an important role in its neuroprotective effects. Our results suggest that zerumbone is a potential therapeutic agent for human neuroinflammatory and neurodegenerative diseases, in particular AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027354 | PMC |
http://dx.doi.org/10.1186/s12974-020-01744-1 | DOI Listing |
Foods
January 2025
School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China.
Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.
View Article and Find Full Text PDFSci Rep
January 2025
USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Pharmacology, Shenyang Pharmaceutical University103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, P.R. China. Electronic address:
Alzheimer's disease (AD) is a progressive degenerative disease that affects a growing number of elderly individuals worldwide. OAB-14, a novel chemical compound developed by our research group, has been approved by the China Food and Drug Administration (FDA) for clinical trials in patients with AD (approval no. YD-OAB-220210).
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!