Metabolomic analyses of the bio-corona formed on TiO nanoparticles incubated with plant leaf tissues.

J Nanobiotechnology

Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.

Published: February 2020

Background: The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase TiO nanoparticles incubated with leaves of the model plant Arabidopsis thaliana.

Results: We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids.

Conclusions: These analyses showed that TiO nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027069PMC
http://dx.doi.org/10.1186/s12951-020-00592-8DOI Listing

Publication Analysis

Top Keywords

tio nanoparticles
8
nanoparticles incubated
8
metabolomic analyses
4
analyses bio-corona
4
bio-corona formed
4
formed tio
4
incubated plant
4
plant leaf
4
leaf tissues
4
tissues background
4

Similar Publications

Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO nanoparticles (TiO@OMV) to combine these effects for improved OSCC treatment.

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.

Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.

View Article and Find Full Text PDF

Tailored protein corona behavior in titanium dioxide nanosheet fluorescence biosensor for protein quantification assays.

J Colloid Interface Sci

December 2024

Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China. Electronic address:

The spontaneous adsorption of proteins onto nanoparticles, known as the protein corona, provides a unique perspective for designing protein-sensing biosensors. This study proposes a tailored protein corona method mediated by Tween-20 and develops a reverse-capture approach for protein quantification assays. The protein-coated microplate captures titanium dioxide nanosheets (TiO-NS) in a phosphate buffer containing Tween-20 and generates fluorescence signals via the photocatalytic reduction of resazurin to resorufin, thereby indicating the amount of protein.

View Article and Find Full Text PDF

Industrial organic dyes represent a significant portion of pollutants discharged into the environment, particularly by the textile industry. These compounds pose serious threats to living organisms due to their high toxicity. Various techniques have been explored for the degradation of organic dyes, among which heterogeneous photocatalysis utilising titanium dioxide (TiO) stands out as a promising technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!