Objectives: Venetoclax, an orally available BCL2-selective inhibitor, has demonstrated promising single-agent anti-tumour activity in myeloma especially patients with t(11;14). Herein, whether venetoclax sensitivity could be enhanced or restored in combination with bortezomib or S63845, a novel MCL1-selective inhibitor, was examined in human myeloma cell lines (HMCLs), including bortezomib-resistant HMCLs.
Methods: By MTS assay, half-maximal inhibitory concentration (IC ) and hence sensitivity/resistance to venetoclax, bortezomib and S63845 were determined.
Key Findings: Venetoclax (IC ≥100 nm), bortezomib (IC ≥50 nm) and S63845 (IC ≥100 nm) resistance was observed in nine (75%), three (25%) and six (50%) HMCLs, respectively. Moreover, venetoclax sensitivity was independent of bortezomib (R = 0.1107) or S63845 (R = 0.0213) sensitivity. Venetoclax sensitivity correlated with high mRNA ratio of BCL2/MCL1 (P = 0.0091), BCL2/BCL2L1 (P = 0.0182) and low MCL1 expression (P = 0.0091). In HMCLs sensitive to both venetoclax and bortezomib/S63845, venetoclax combined with S63845 showed stronger synergistic effect than combined with bortezomib. Moreover, in venetoclax-resistant HMCLs, S63845, but not bortezomib, significantly restored venetoclax sensitivity. Conversely, bortezomib combined with S63845 did not result in augmented bortezomib sensitivity or abolishment of bortezomib resistance.
Conclusions: Regardless of t(11;14), combination of venetoclax with S63845 is a promising strategy in enhancing venetoclax sensitivity or overcoming venetoclax resistance in myeloma therapy, hence warrant future clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jphp.13240 | DOI Listing |
Genome Res
January 2025
The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Amsterdam UMC, Cancer Center Amsterdam
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.
View Article and Find Full Text PDFSci Transl Med
January 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada.
Cancer Cell Int
December 2024
Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
Background: Drug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment.
View Article and Find Full Text PDFAdoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!