Aim: A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia.

Methods: A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed.

Results: The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice.

Conclusion: The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318658PMC
http://dx.doi.org/10.1111/pcn.12993DOI Listing

Publication Analysis

Top Keywords

reln-del mice
16
exonic deletion
12
novel exonic
8
deletion reln
8
homozygous reln-del
8
mice cerebellar
8
cerebellar atrophy
8
atrophy dysplasia
8
heterozygous reln-del
8
mice
7

Similar Publications

Mice with exonic RELN deletion identified from a patient with schizophrenia have impaired visual discrimination learning and reversal learning in touchscreen operant tasks.

Behav Brain Res

January 2022

Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan. Electronic address:

The Reelin gene (RELN) encodes a large extracellular protein, which has multiple roles in brain development and adult brain function. It activates a series of neuronal signal transduction pathways in the adult brain that function in synaptic plasticity, dendritic morphology, and cognitive function. To further investigate the roles of Reln in brain function, we generated a mouse line using the C57BL/6 J strain with the specific Reln deletion identified from a Japanese patient with schizophrenia (Reln-del mice).

View Article and Find Full Text PDF

Reelin, an extracellular matrix protein, is secreted by Cajal-Retzius cells and plays crucial roles in the development of brain structures and neuronal functions. Reductions in Reelin cause the brain dysfunctions associated with mental disorders, such as schizophrenia. A recent genome-wide copy number variation analysis of Japanese schizophrenia patients identified a novel deletion in RELN encoding Reelin.

View Article and Find Full Text PDF

Aim: A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia.

Methods: A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!