Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.29692DOI Listing

Publication Analysis

Top Keywords

magea2
9
magea2 regulates
8
pluripotency proliferation
8
apoptosis differentiation
8
mouse embryonic
8
embryonic stem
8
stem cells
8
clinical application
8
magea2 mescs
8
magea2 knockdown
8

Similar Publications

Melanoma antigen gene-A2 (MAGE-A2) is one of the most cancer-testis antigens overexpressed in a variety of malignancies. However, the expression of MAGE-A2 for clinical values in the pathophysiology of renal cell carcinoma (RCC) is unknown. For the first time, the present study was conducted to examine the expression and prognostic significance of MAGE-A2 expression in clear cell RCC (ccRCC).

View Article and Find Full Text PDF

hMAGEA2 as a potential diagnostic and therapeutic target for melanoma progression and metastasis.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, South Korea.

The incidence of melanoma, a highly aggressive skin cancer, continues to increase worldwide, particularly among populations with lighter skin tones. The diagnostic challenge of melanoma lies in the absence of a distinctive clinical presentation, as its characteristics vary based on anatomical location, growth type, and histopathology. The melanoma-associated antigen (MAGE) gene family is differentially expressed in various human cancers, including melanoma.

View Article and Find Full Text PDF

Background/aim: Human melanoma-associated antigen A2 (hMAGEA2) family members play several roles in many types of cancer and have been explored as potential prognostic markers. In this study, we investigated the molecular mechanism underlying hMAGEA2-mediated tumorigenesis of prostate cancer.

Materials And Methods: Immunohistochemistry and western blot were used to assess protein expression whereas microarray and quantitative reverse transcription-PCR determined mRNA expression.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response.

View Article and Find Full Text PDF

Immunization with a multi-antigen targeted DNA vaccine eliminates chemoresistant pancreatic cancer by disrupting tumor-stromal cell crosstalk.

J Transl Med

October 2023

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Background: Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!