Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A low-cost Cr(III)-incorporated Zr(IV) bimetallic oxide (CZ) was synthesized by simple chemical precipitation method for removal of fluoride from contaminated water. The physicochemical properties of CZ before and after fluoride removal were established with several instrumental techniques such as TEM with elemental mapping, SEM with EDX, XRD, IR, XPS, zeta potential measurement, etc. Batch adsorption technique were carried out to understand the factors affecting fluoride adsorption, such as effects of initial pH, adsorbent dose, co-occurring ions, contact time, and temperature. The maximum adsorption capacity observed at pH between 5 and 7. The fluoride adsorption processes on CZ obeyed the pseudo-second-order rate equations and both Freundlich and DR isotherm models. The maximum adsorption capacity of 90.67 mg g was obtained. The thermodynamic parameters ΔH (positive), ΔS (positive), and ΔG (negative) indicating the fluoride sorption system was endothermic, spontaneous, and feasible. The CZ also successfully used as fluoride adsorbent for real field contaminated water collected from the Machatora district, Bankura, West Bengal, India. Graphical abstract Schematic representation of CZ synthesis and its application for lab as well as field water purification purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-07980-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!