A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research. | LitMetric

The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020620PMC
http://dx.doi.org/10.1109/BIOCAS.2018.8584729DOI Listing

Publication Analysis

Top Keywords

sensor platform
8
current draw
8
low-cost implantable
4
implantable wireless
4
wireless sensor
4
platform
4
platform neuromodulation
4
neuromodulation role
4
role peripheral
4
peripheral nerves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!