Plutonium(IV) Sorption during Ferrihydrite Nanoparticle Formation.

ACS Earth Space Chem

Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom.

Published: November 2019

Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in cleanup of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation, and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution. The initial 1 M HNO solution with Fe(III) and Pu(IV) underwent controlled hydrolysis via the addition of NaOH to pH 9. The majority of Fe(III) and Pu(IV) was removed from solution between pH 2 and 3 during ferrihydrite formation. Analysis of Pu-ferrihydrite by extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Pu(IV) formed an inner-sphere tetradentate complex on the ferrihydrite surface, with minor amounts of PuO present. Best fits to the EXAFS data collected from Pu-ferrihydrite samples aged for 2 and 6 months showed no statistically significant change in the Pu(IV)-Fe oxyhydroxide surface complex despite the ferrihydrite undergoing extensive recrystallization to hematite. This suggests the Pu remains strongly sorbed to the iron (oxyhydr)oxide surface and could be retained over extended time periods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011701PMC
http://dx.doi.org/10.1021/acsearthspacechem.9b00105DOI Listing

Publication Analysis

Top Keywords

iron oxyhydroxide
8
feiii puiv
8
oxyhydroxide surface
8
ferrihydrite
5
plutoniumiv sorption
4
sorption ferrihydrite
4
ferrihydrite nanoparticle
4
nanoparticle formation
4
formation understanding
4
understanding interactions
4

Similar Publications

Oxygen adsorption and activation control the photochemical activity of common iron oxyhydroxide polymorphs in mediating oxytetracycline degradation under visible light.

J Colloid Interface Sci

December 2024

MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

The natural minerals with semiconducting properties possess photochemical activity through generating reactive oxygen species (ROSs) and affect the fate of adsorbed organic pollutants. Iron oxyhydroxides occur in different polymorphic structures under various geological and climatic conditions in natural environment. However, the difference in their photoactivity has not been well understood.

View Article and Find Full Text PDF

Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes.

View Article and Find Full Text PDF

Bismuth oxide (BiVO) is considered one of the most promising semiconductors for photoelectrochemical (PEC) water splitting due to its highly theoretical photocurrent of 7.5 mA cm. However, its sluggish kinetics and severe photocorrosion still hinder the real application of a large-area BiVO photoanode.

View Article and Find Full Text PDF

Sustainable chloramine-functionalized iron hydroxide nanofiber membrane for arsenic(Ⅲ) removal via oxidation-adsorption mechanism.

Chemosphere

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China. Electronic address:

Article Synopsis
  • Arsenic-contaminated groundwater, particularly As(III), poses a global environmental challenge due to its toxicity and difficulty in removal; this study focuses on developing a chloramine-functionalized iron hydroxide cellulose nanofibrous membrane (Fe-CNFM-Cl) to address this issue.* -
  • The Fe-CNFM-Cl membrane not only adsorbs As(III) but also oxidizes it to a more removable form, As(V), allowing significant reduction of arsenic levels from 1418.73 μg L to below drinking water standards in about 300 minutes.* -
  • This innovative membrane shows a high capacity for arsenic removal across a wide pH range, can recover its functionality after use
View Article and Find Full Text PDF

Earth-abundant transition metal phosphide (TMP) nanomaterials have gained significant attention as potential replacements for Pt-based electrocatalysts in green energy applications, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. In particular, FeP nanostructures exhibit superior electrical conductivity and high stability. Moreover, their diverse composition and unique crystal structures position FeP nanomaterials as emerging candidates for HER electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!