A fivefold node is a path to dodecagonal quasicrystal approximants in coordination polymers.

Sci Adv

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm 10691, Sweden.

Published: January 2020

Aperiodic formations continue to focus interest in areas ranging from advanced scientific theories to practical everyday applications. Starting from diverse and tightly bonded intermetallic compounds, this world showed an important breakthrough toward the so-called soft systems of meso/macroscale: liquid crystals, thin films, polymers, proteins, etc. This work opens a route for making bulk quasicrystals (QC) in an unprecedented but very common area, with molecular ligands. Since these systems are, to a large extent, transparent, they extend the possible areas of QC application to previously unreachable corners, e.g., photonics. We combined efficient bridging ligands with uranyl pentagonal bonding centers and, unexpectedly, brought the unique attributes of f-element coordination chemistry to an interdisciplinary area of aperiodic formations. Taking advantage of the planar coordination of uranyl ions, we were able to direct the structure expansion solely in two directions with a characteristic snub square tiling, a predicted but previously unobtainable dodecagonal approximant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994202PMC
http://dx.doi.org/10.1126/sciadv.aay7685DOI Listing

Publication Analysis

Top Keywords

aperiodic formations
8
fivefold node
4
node path
4
path dodecagonal
4
dodecagonal quasicrystal
4
quasicrystal approximants
4
approximants coordination
4
coordination polymers
4
polymers aperiodic
4
formations continue
4

Similar Publications

An aperiodic chiral tiling by topological molecular self-assembly.

Nat Commun

January 2025

Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.

Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges.

View Article and Find Full Text PDF

Unlabelled: A hatching-distance-controlled lattice of 65.1Co28.2Cr5.

View Article and Find Full Text PDF

Prefrontal excitation/inhibition balance supports adolescent enhancements in circuit signal to noise ratio.

Prog Neurobiol

December 2024

The Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, PA, USA. Electronic address:

The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization.

View Article and Find Full Text PDF

Brain activities are a mixture of periodic and aperiodic components, manifesting in the power spectral density (PSD) as rhythmic oscillations with spectral peaks and broadband fluctuations. Periodic oscillatory properties of brain response to external stimulation are widely studied, while aperiodic component responses remain unclear. Here, we investigate spatiotemporal dynamics of periodic and aperiodic brain activity under peripheral nerve stimulation with acupuncture by parameterization of power spectra of EEG signals.

View Article and Find Full Text PDF
Article Synopsis
  • Landau introduced the concept of rotons to explain superfluid liquid helium, which are quantum particle excitations associated with the disordered arrangement of atoms.
  • The study demonstrates the existence of electronic rotons in a two-dimensional dipole liquid of alkali-metal ions interacting with black phosphorus, showcasing a unique energy minimum in their dispersion.
  • As dipole density decreases, the interactions become more significant, leading to Wigner crystallization, with our findings highlighting the role of strong correlations in the formation of electronic rotons and a pseudogap.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!