Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
EZH2, a histone methylase, plays a critical role in the tumor progression via regulation of progenitor genes. However, the detailed molecular mechanism of EZH2 in cancer malignant progression remains unknown. Therefore, we aimed to investigate how EZH2 is regulated in human cancer. We used numerous approaches, including Co-immunoprecipitation (Co-IP), Transfection, RT-PCR, Western blotting, Transwell assays, and animal studies, to determine the deubiquitination mechanism of EZH2 in cancer cells. We demonstrated that USP7 regulated EZH2 in human cancer cells and in mouse models. Overexpression of USP7 promoted the expression of EZH2 protein, but overexpression of a USP7 mutant did not change the EZH2 level. Consistently, knockdown of USP7 resulted in a striking decrease in EZH2 protein levels in human cancer cells. Functionally, USP7 overexpression promoted cell growth and invasion via deubiquitination of EZH2. Consistently, downregulation of USP7 inhibited cell migration and invasion in cancer. More importantly, knockdown of USP7 inhibited tumor growth, while USP7 overexpression exhibited opposed effect in mice. Our results indicate that USP7 regulates EZH2 via its deubiquitination and stabilization. The USP7/EZH2 axis could present a new promising therapeutic target for cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017725 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!