We have developed a metallic micro-cavity array filter and an automated detection system for capturing circulating tumor cells (CTCs). In this single institutional pilot study, we assessed the ability of this device to detect CTCs in patients with lung cancer at each stage. Patients diagnosed with lung cancer, undergoing planned surgery for lung cancer, or suspected of having lung cancer were recruited (40 recruited and 2 excluded). Blood samples were obtained from the patients and 3 ml whole blood was applied to the device without any preparation. The captured cells were stained to differentiate the nucleus, and determine cytokeratin and CD45 expression. Subsequently, two operators blinded to clinical information counted the number of CTCs. Sample collection was performed at the time of recruitment, before treatment and ~3 months after initial blood collection. CTC counts at recruitment were 1.4±0.4, 1.8±1.2, 1.3±0.6 and 7.4±5.1 (mean ± SE) in clinical stages I, II, III and IV, respectively. No significant difference was observed among the stages. These data indicated the ability of this device to detect CTCs at early or non-metastatic stages of lung cancer. Further research on a larger scale is needed for a more accurate assessment of the device, and research on the utility of captured cells remains a future challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016515PMC
http://dx.doi.org/10.3892/mco.2020.1973DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
circulating tumor
8
tumor cells
8
patients lung
8
metallic micro-cavity
8
micro-cavity array
8
array filter
8
pilot study
8
ability device
8
device detect
8

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Marine-Derived Compound Targeting mTOR and FGFR-2: A Promising Strategy for Breast, Lung, and Colorectal Cancer Therapy.

Med Chem

January 2025

Integrated Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India.

Introduction: The marine habitat is a plentiful source of diverse, active compounds that are extensively utilised for their medicinal properties. Pharmaceutical trends have currently changed towards utilising a diverse range of goods derived from the marine environment.

Method: This study aimed to examine the inhibitory effects of bioactive chemicals derived from marine algae and bacteria.

View Article and Find Full Text PDF

Introduction: Immunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.

Methods: Data of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023.

View Article and Find Full Text PDF

Purpose: (Tumor-educated platelets) TEPs have emerged as active players in all steps of tumorigenesis, confrontation of platelets with tumor cells via transfer of tumor-associated biomolecules and results in the sequestration of such biomolecules. The current study was aimed to examine whether TEPs lncRNA-STARD4-AS1 and ELOA-AS1 might be potential biomarkers for NSCLC.

Materials And Methods: TEPs were obtained by low-speed centrifugation.

View Article and Find Full Text PDF

While NUSAP1's association with various tumors is established, its predictive value for prognosis and immunotherapy in lung adenocarcinoma (LUAD) remains unconfirmed. We analyzed Nucleolar Spindle-Associated Protein 1 (NUSAP1) gene expression in TCGA and GTEx datasets and validated it in clinicopathological tissues using qRT-PCR and immunohistochemistry. Additionally, we investigated NUSAP1's relationship with patient prognosis across TCGA and five GEO cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!