Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alternate treatment routes for radioactive waste are a key research area for much of the nuclear industry, with potentially significant savings available through volume reduction of waste. Achieving this requires a full and demonstrable understanding of waste product behaviour. For this purpose, the UK's National Nuclear Laboratory (NNL) has been collaborating with the University of Glasgow and Lynkeos Technology to develop passive techniques for analysis of waste containers over a number of years. In this instance, novel muon tomographic techniques have been applied to the analysis of thermally treated nuclear waste surrogates as part of a project to build and deploy a first of a kind muon imaging system for nuclear waste. The system has been deployed at NNL's Central Laboratory, Cumbria, UK, to analyse products from a series of thermal treatment technology trials, funded by the Nuclear Decommissioning Authority (NDA) through the Direct Research Portfolio (DRP). Analysis of the waste products using this technique has proven the value of muon analysis in the development of waste management technologies, proving an ability to understand the homogeneity of products and direct further destructive testing. Results from three different thermal treatment trials are presented, with three different surrogate intermediate level waste (ILW) forms in each.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2019.109033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!