An ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-cyclodextrin) was firstly synthesized through the reaction of 6-deoxy-6-amino-β-cyclodextrin (NH-CD) with ethylenediaminetetraacetic dianhydride. Then it was bonded onto the surface of silica gel SBA-15 to obtain an ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-CD)-bonded chiral stationary phase (EBCDP). The structures of the bridged bis(β-CD) and EBCDP were characterized by infrared spectroscopy, mass spectrometry, elemental analysis and thermogravimetric analysis, accordingly. The chiral chromatographic performances of EBCDP were systematically evaluated by separating 28 racemic analytes in the reversed-phase or polar organic mode, including eight flavanones, eight bolckers, five dansyl-amino acids, three DL-amino acids and four other common drugs. As a result, the relatively high enantioselectivity of EBCDP was observed in comparison with a native β-CD-CSP (CDSP). All selected analytes were separated on EBCDP, of which 20 analytes had resolutions up to baseline, 2'-hydroxyflavanone and arotinolol had resolutions up to 4.35 and 2.05 in about 30 min, respectively, whereas CDSP only separated 11 analytes with low resolutions (0.55~1.69). Moreover, EBCDP was able to utilize the complexation of the bridging linker (ethylenediamine dicarboxyethyl diamide group, EDTA-based) to realize direct separations of DL-amino acids with a mobile phase containing copper ion (Cu), which was similar to the chiral ligand exchange chromatography. Unlike the native cyclodextrin with small cavity (~242 Å), the bridged bis(β-CD) combined two β-CD units with a bridging linker, having a well-organized "pseudo-cavity" as an organic whole to encapsulate more analytes, which made EBCDP have broad-spectrum applications in chiral separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.460937 | DOI Listing |
J Agric Food Chem
October 2023
Laboratory for Advanced Carbon Nanomaterials, Chemical Institute, Kazan Federal University, Kremlevskaya St. 18, Kazan 420008, Russian Federation.
Serious concerns about the negative impact of ethylenediaminetetraacetic acid (EDTA) on the environment resulted in severe restrictions imposed on this compound in many countries. One of the main concerns is related to the use of EDTA in agriculture as a chelator in microelement fertilizers: being introduced directly into the sawing fields, it penetrates into groundwater, with no chance to be captured/recycled. Respectively, there is an active search for environmentally friendly, biodegradable alternatives for this chelator.
View Article and Find Full Text PDFJ Chromatogr A
May 2020
College of Chemistry, Nanchang University, Nanchang 330031, China. Electronic address:
An ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-cyclodextrin) was firstly synthesized through the reaction of 6-deoxy-6-amino-β-cyclodextrin (NH-CD) with ethylenediaminetetraacetic dianhydride. Then it was bonded onto the surface of silica gel SBA-15 to obtain an ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-CD)-bonded chiral stationary phase (EBCDP). The structures of the bridged bis(β-CD) and EBCDP were characterized by infrared spectroscopy, mass spectrometry, elemental analysis and thermogravimetric analysis, accordingly.
View Article and Find Full Text PDFJ Agric Food Chem
December 2011
Departamento de Química Agrícola, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!