The main pond within the historic Royal Botanic Garden Edinburgh is an important component of urban blue-green infrastructure. This paper reports on flood resilience provided by the pond (simulated using the CityCAT hydrodynamic model), its water residence times (obtained using the Shetran hydrological model), and the ecology and biodiversity (vascular plants, bryophytes, aquatic invertebrates, phyto- and zooplankton, birds) of the pond and the adjacent area. The results show that the pond improves the flood resilience with at least a 27% reduction in the peak discharge during a 1 h, one in 100-year event. The area represents a biodiversity hot spot with a range of native taxa occurring among introduced plant species. The plankton community is dominated by diatoms, reflecting elevated levels of turbulence and a relatively short residence time, with an average value of 10 days. Analysis of macroinvertebrate community indicates a potential for water quality improvement. The results are discussed in relation to multiple societal benefits related to flood resilience, recreation, education, water quality, amenity and biodiversity value. The conclusions may prove particularly valuable for introducing practical measures in the water catchment, preventing waterlogging of the soil and ensuring an uninterrupted supply of public services. This article is part of the theme issue 'Urban flood resilience'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061967PMC
http://dx.doi.org/10.1098/rsta.2019.0389DOI Listing

Publication Analysis

Top Keywords

flood resilience
16
amenity biodiversity
8
water quality
8
flood
5
pond
5
resilience amenity
4
biodiversity
4
biodiversity benefits
4
benefits historic
4
historic urban
4

Similar Publications

Respiratory and hematological physiology of day 15 chicken embryos (Gallus gallus domesticus) during water submergence and air recovery: Implications for bird embryos experiencing nest inundation.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.

Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.

View Article and Find Full Text PDF

Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).

View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses.

Microorganisms

November 2024

State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.

View Article and Find Full Text PDF

Permeable asphalt pavement (PAP) is an efficient solution to stormwater management, allowing water to infiltrate through its layers. This reduces surface runoff and mitigates urban flooding risks. In addition to these hydrological benefits, PAP enhances water quality by filtering pollutants such as organic and inorganic materials and microplastics.

View Article and Find Full Text PDF

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!