Dysregulation of the stress response can occur early in life and may be affected by nutrition. Our objective was to evaluate the long-term effect of nutritional supplementation during gestation and early childhood on child cortisol and buccal telomere length (a marker of cellular aging) at 4-6 years of age. We conducted a follow-up study of children born to women who participated in a nutritional supplementation trial in Ghana. In one group, a lipid-based nutrient supplement (LNS) was provided to women during gestation and the first 6 months postpartum and to their infants from age 6 to 18 months. The control groups received either iron and folic acid (IFA) during gestation or multiple micronutrients during gestation and the first 6 months postpartum, with no infant supplementation. At age 4-6 years, we measured hair cortisol, buccal telomere length, and salivary cortisol before and after a stressor. Salivary cortisol was available for 364 children across all three trial arms and hair cortisol and telomere length were available for a subset of children ( = 275 and 278, respectively) from the LNS and IFA groups. Telomere length, salivary cortisol, and hair cortisol did not differ by supplementation group. Overall, these findings suggest that nutritional supplementation given during gestation and early childhood does not have an effect on child stress response or chronic stress in children at 4-6 years. ClinicalTrials.gov Identifier NCT00970866.Lay SummaryThis study addressed a research gap about whether improved nutrition during pregnancy and early childhood impacts telomere length and cortisol in preschool children. There was no difference in child telomere length or cortisol between two trial arms of a nutritional supplementation trial that began during pregnancy. The research outcomes indicate lipid-based nutrient supplements, a relatively new form of supplementation, do not have an effect on markers of stress or cellular aging measured in later childhood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497284 | PMC |
http://dx.doi.org/10.1080/10253890.2020.1728528 | DOI Listing |
FEBS Lett
January 2025
Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy.
Some tumors employ a mechanism called alternative lengthening of telomeres (ALT) to counteract telomere shortening-induced replicative senescence. Several hallmarks are used to identify cell lines and tumors as ALT-positive. Here, we analyzed a panel of ALT-positive and -negative cancer cell lines to investigate the specificity and sensibility of ALT-associated markers.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
Objective: Idiopathic normal pressure hydrocephalus (iNPH) is highly prevalent among elderly individuals, and there is a strong correlation between telomere length and biological aging. However, there is limited evidence to elucidate the relationship between telomere length and iNPH. This study aimed to investigate the associations between telomere length and iNPH using the Mendelian randomization (MR) method.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA.
Problem: COVID-19 during pregnancy is linked to increased maternal morbidity and a higher incidence of preterm births (PTBs), yet the underlying mechanisms remain unclear. Cellular senescence, characterized by the irreversible cessation of cell division, is a critical process in placental function, and its dysregulation has been implicated in pregnancy complications like PTB. Senescence can be induced by various stressors, including oxidative stress, DNA damage, and viral infections.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!