Clostridium tyrobutyricum cannot utilize galactose, which is abundant in lignocellulose and red algae, as a carbon source for butyric acid production. Hence, when using galactose-rich coffee ground hydrolysate as the substrate, the fermentation performance of C. tyrobutyricum is poor. In this work, a recombinant strain, C. tyrobutyricum ATCC 25755/ketp, overexpressing galactose catabolism genes (galK, galE, galT, and galP) from Clostridium acetobutylicum ATCC 824 was constructed for the co-utilization of glucose and galactose. Batch fermentation in the bioreactor showed that ATCC 25755/ketp could efficiently utilize galactose without glucose-induced carbon catabolite repression and consume nearly 100% of the galactose present in the spent coffee ground hydrolysate. Correspondingly, the butyric acid concentration and productivity of ATCC 25755/ketp reached 34.3 g/L and 0.36 g/L·h, respectively, an increase of 78.6% and 56.5% compared with the wild-type strain, indicating its potential for butyric acid production from hydrolysates of inexpensive and galactose-rich biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.122977 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!