Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A study of the mobility of major and potentially hazardous trace elements from coal processing waste materials was conducted using two types of leaching tests. The baseline leaching test simulates stable waste storage under water, whereas the kinetic test models the storage of waste under more variable conditions including intermittent exposure to air and variations in humidity. Coarse and fine refuse materials were obtained from three commercial coal preparation plants that were being used to upgrade US bituminous run-of-mine coal containing low-to-high amounts of pyritic sulfur. X-ray diffraction analyses revealed a large variation in mineralogy between the coarse and fine refuse streams due to the mineral fractionation that occurs in the processing units and plant. The coarse refuse samples contained higher pyrite contents while the fine refuse samples had high clay content and a minor amount of calcite. This variation in mineralogy resulted in relatively large difference in the leaching characteristics of the waste streams. The most acidic pH and highest release of trace elements were observed in the leachate of coarse refuse containing medium-to-high amounts of coal pyrite, while the fine refuse samples released lower amounts of trace elements in their circumneutral leachate. The least amount of trace elements was observed in the leachate of low pyritic refuse streams. The test data suggested that the most effective disposal practice for coal waste material is segregation and isolation of the coal pyrite and co-disposal of the coarse and fine refuse streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!