Inter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50-100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants. Unexpected torque pulses displaced one or both shoulders while participants adopted a steady posture against background torques. The results demonstrated inter-limb stretch reflexes occurring at short-latency for both shoulder extensors and flexors; the rapid timing (36-50 ms) must involve a spinal linkage for the two arms. Inter-limb stretch reflexes were also observed at long-latency yet they were opposite to the preceding short-latency; when the short-latency stretch reflex was excitatory then the long-latency stretch reflex was inhibitory and vice versa. Comparing the responses to contralateral arm displacement to those during simultaneous displacement of both arms revealed that inhibitory inter-limb stretch reflexes are independent of within-limb stretch reflexes, but that excitatory inter-limb stretch reflexes are suppressed by within-limb stretch reflexes. Our results provide the first demonstration of short-latency inter-limb stretch reflexes in the upper limb of humans and reveal interacting spinal circuits for within-limb and inter-limb stretch reflexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2020.02.007 | DOI Listing |
Clin Neurophysiol
December 2024
School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y5, Canada; Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada.
Clin Neurophysiol
December 2024
Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
Voltage-sensitive calcium channels contribute to depolarization of both motor- and interneurons in animal studies, but less is known of their contribution to human motor control and whether blocking them has potential in future antispasmodic treatment in humans. Therefore, this study investigated the acute effect of Nimodipine on the transmission of human spinal reflex pathways involved in spasticity. In a double-blinded, cross-over study, we measured soleus muscle stretch- and H-reflexes, and tibialis anterior cutaneous reflexes in nineteen healthy subjects before and after Nimodipine (tab-let 60mg) or Baclofen (tablet 25mg).
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Psychology and Communication, University of Idaho, Moscow, ID, United States.
Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Institute for Neural Computation, Ruhr-University, Bochum, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!