Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases.

Biochim Biophys Acta Mol Cell Biol Lipids

Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: November 2020

The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15'-β-carotene oxygenase (BCO1), 9',10'-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423639PMC
http://dx.doi.org/10.1016/j.bbalip.2020.158665DOI Listing

Publication Analysis

Top Keywords

carotenoid cleavage
12
evolutionary aspects
8
cleavage oxygenase
8
carotenoid oxygenases
8
carotenoid
6
aspects enzymology
4
enzymology metazoan
4
metazoan carotenoid
4
cleavage
4
cleavage oxygenases
4

Similar Publications

The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.

View Article and Find Full Text PDF

Carotenoids are a diverse group of pigments imparting red, orange, and yellow hues to many horticultural plants, also enhancing their nutritional properties and health benefits. In strawberry, the genetic and molecular mechanisms regulating the natural variation of fruit carotenoid composition remain largely unexplored. In this study, we use a population segregating in yellow/white flesh to detect a major quantitative trait locus (QTL), qYellow Flesh-4B, located on chromosome 4B and accounting for 82% of total phenotypic variation.

View Article and Find Full Text PDF

The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.

View Article and Find Full Text PDF

Protein engineering of an oxidative cleavage-free pathway for crocetin-dialdehyde production in Escherichia coli.

Metab Eng

December 2024

Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea. Electronic address:

The growing depletion of petroleum resources and the increasing demand for sustainable alternatives have spurred advancements in microorganism-based biofactories. Among high-value compounds, carotenoids are widely sought after in pharmaceuticals, cosmetics, and nutrition, making them prime candidates for microbial production. In this study, we engineered an efficient biosynthetic pathway in Escherichia coli for the production of the C-carotenoid crocetin-dialdehyde.

View Article and Find Full Text PDF

Regulation of abscisic acid receptor mRNA stability: Involvement of microRNA5628 in PYL6 transcript decay.

Plant Physiol

December 2024

Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil.

Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!