Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The past decade has witnessed a rapid growth in the field of extracellular vesicle (EV) based biomarkers for the diagnosis and monitoring of cancer. Several studies have reported novel EV based biomarkers, but the technical and clinical validation phase has been hampered by general challenges common to biomedical research field as well as specific challenges inherent to the nanoparticle field. This has led to more common failures than success stories in the biomarker discovery pipeline. As a result, more attention must be focused on the process of biomarker discovery, verification, and validation to allow for translation and application of novel EV based research to patient care. Herein, we briefly discuss the hurdles and potential solutions in EV biomarker discovery and verification and validation, and clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198349 | PMC |
http://dx.doi.org/10.1016/j.ymeth.2020.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!