Overcoming confounding by indication in nutrition research using electronic healthcare data.

Clin Nutr

CAPER Unit Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA. Electronic address:

Published: April 2020

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clnu.2020.01.024DOI Listing

Publication Analysis

Top Keywords

overcoming confounding
4
confounding indication
4
indication nutrition
4
nutrition electronic
4
electronic healthcare
4
healthcare data
4
overcoming
1
indication
1
nutrition
1
electronic
1

Similar Publications

Identifying the determinants of pregnancy loss is a critical public health concern. However, pregnancy loss is often not noticed, and even when it is, it is inconsistently recorded. Thus, past studies have been limited to medically-identified losses or small, highly selected cohorts, which can lead to biased or non-generalizable results.

View Article and Find Full Text PDF

Structures of methane and ammonia monooxygenases in native membranes.

Proc Natl Acad Sci U S A

January 2025

Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208.

Methane- and ammonia-oxidizing bacteria play key roles in the global carbon and nitrogen cycles, respectively. These bacteria use homologous copper membrane monooxygenases to accomplish the defining chemical transformations of their metabolisms: the oxidations of methane to methanol by particulate methane monooxygenase (pMMO) and ammonia to hydroxylamine by ammonia monooxygenase (AMO), enzymes of prime interest for applications in mitigating climate change. However, investigations of these enzymes have been hindered by the need for disruptive detergent solubilization prior to structure determination, confounding studies of pMMO and precluding studies of AMO.

View Article and Find Full Text PDF

Measuring transient functional connectivity is an important challenge in electroencephalogram (EEG) research. Here, the rich potential for insightful, discriminative information of brain activity offered by high-temporal resolution is confounded by the inherent noise of the medium and the spurious nature of correlations computed over short temporal windows. We propose a methodology to overcome these problems called filter average short-term (FAST) functional connectivity.

View Article and Find Full Text PDF

This paper bridges critical gaps through proposing a novel, environmentally mediated brain-derived neurotrophic factor (BDNF)-interactive model that promises to sustain adult hippocampal neurogenesis in humans. It explains how three environmental enrichment mechanisms (physical activity, cognitive stimulation, and mindfulness) can integratively regulate BDNF and other growth factors and neurotransmitters to support neurogenesis at various stages, and how those mechanisms can be promoted by the physical environment. The approach enables the isolation of specific environmental factors and their molecular effects to promote sustainable BDNF regulation by testing the environment's ability to increase BDNF immediately or shortly before it is consumed for muscle repair or brain update.

View Article and Find Full Text PDF

Being an extremely high mortality rate condition, cardiac arrest cases have rightfully been evaluated via various studies and scoring factors for effective resuscitative practices and neurological outcomes postresuscitation. This narrative review aims to explore the role of artificial intelligence (AI) in predicting neurological outcomes postcardiac resuscitation. The methodology involved a detailed review of all relevant recent studies of AI, different machine learning algorithms, prediction tools, and assessing their benefit in predicting neurological outcomes in postcardiac resuscitation cases as compared to more traditional prognostic scoring systems and tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!