Increasing molecular diversity and market competition requires biopharmaceutical manufacturers to intensify their processes. In this respect, frontal chromatography on cation exchange resins has shown its potential to effectively remove aggregates. However, yield losses during the wash step need to be accepted in order to ensure robust product quality. In this work, we present a novel counter-current frontal chromatography process called Flow2, which uses inline dilution during an interconnected wash phase to allow high monomer recovery without contaminating the product pool with impurities. Its model-based design spaces under purity and yield constraints are compared with those corresponding to traditional batch processes in terms of size and process attributes yield and productivity. The Flow2 process shows the largest extent of feasible operating points independent of feed conditions. Thereby, it allows the implementation of higher ionic strength wash, thus widening the range of operating conditions resulting in yields above 95% compared to batch processes. Productivities of batch and counter-current processes are the same at short regeneration times and equal residence time. However, long regeneration times, while influencing the size of the Flow2 design space, are not detrimental for its productivity resulting in twice as high values as obtained for the batch process. Furthermore, process robustness is evaluated by the ability of the process to maintain the required product quality when subjected to process parameter perturbations. It is found that the Flow2 process is able to retain a larger design space associated also with higher yields showing its ability to improve process attributes without sacrificing robustness at the same time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.460943 | DOI Listing |
Lancet Reg Health Eur
March 2025
Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy.
Digital technologies can help support the health of migrants and refugees and facilitate research on their health issues. However, ethical concerns include security and confidentiality of information; informed consent; how to engage migrants in designing, implementing and researching digital tools; inequitable access to mobile devices and the internet; and access to health services for early intervention and follow-up. Digital technical solutions do not necessarily overcome problems that are political, social, or economic.
View Article and Find Full Text PDFDigit Discov
January 2025
School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated design.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Center for Visual Science, The Institute of Optics, Flaum Eye Institute. University of Rochester, Rochester, NY, USA.
An intraocular lens (IOL) replaces the natural crystalline lens during cataract surgery, and although the vast majority of implants have simple optics, "advanced technology" IOLs have multifocal and extended depth of focus (EDOF) properties. Optical concepts are evaluated here, with image contrast, focal range, and unwanted visual phenomena being the primary concerns. Visual phenomena with earlier bifocal diffractive lenses led to alternative diffractive designs (trifocals, etc.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France.
Designing chemically novel and synthesizable ligands from the largest possible chemical space is a major issue in modern drug discovery to identify early hits that are easily amenable to medicinal chemistry optimization. Starting from the sole three-dimensional structure of a protein binding site, we herewith describe a fully automated active learning protocol to propose the commercial chemical reagents and one-step organic chemistry reactions necessary to enumerate target-specific primary hits from ultralarge chemical spaces. When applied in different scenarios (single transform and multiple transforms) addressing chemical spaces of various sizes (from 670 million to 4.
View Article and Find Full Text PDFA 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!