The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron-phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5131696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!