AI Article Synopsis

  • The research aimed to investigate whether microRNAs (miRNAs) could serve as biomarkers for predicting atherosclerotic plaque progression and cardiovascular events in patients with familial hypercholesterolaemia (FH).
  • A study compared miRNA levels in FH patients who experienced cardiovascular events over 8 years to those who did not, identifying 10 significant miRNAs, with miR-133a showing the strongest association with increased risk.
  • Findings indicated that higher levels of miR-133a correlated with a nearly fourfold increased risk of cardiovascular events, suggesting its potential as a predictive biomarker in FH patients.

Article Abstract

Aims: Presentation of acute events in patients with atherosclerosis remains unpredictable even after controlling for classical risk factors. MicroRNAs (miRNAs) measured in liquid biopsies could be good candidate biomarkers to improve risk prediction. Here, we hypothesized that miRNAs could predict atherosclerotic plaque progression and clinical event presentation in familial hypercholesterolaemia (FH) patients.

Methods And Results: Circulating miRNAs (plasma, exosomes, and microvesicles) were investigated by TaqMan Array and RT-qPCR assays. Patients with genetic diagnosis of FH and healthy relatives from the SAFEHEART cohort were included. A differential signature of 10 miRNA was obtained by comparing two extreme phenotypes consisting of FH patients suffering a cardiovascular event (CVE) within a 8-year follow-up period (FH-CVE, N = 42) and non-FH hypercholesterolaemic relatives from the same cohort, matched for age and treatment, without CVE during the same period (nFH-nCVE, N = 30). The validation studies included two independent groups of patients with FH background (discovery group, N = 89, validation group N = 196), developing a future CVE (FH-CVE) or not (FH-nCVE) within the same time period of follow-up. Of the 10 miRNAs initially selected, miR-133a was significantly higher in FH-CVE than in FH-nCVE patients. Receiver operating characteristic analysis confirmed miR-133a as the best microRNA for predicting CVE in FH patients (0.76 ± 0.054; P < 0.001). Furthermore, Kaplan-Meier and COX analysis showed that high plasma miR-133a levels associated to the higher risk of presenting a CVE within the next 8 years (hazard ratio 3.89, 95% confidence interval 1.88-8.07; P < 0.001). In silico analysis of curate biological interactions related miR-133a with target genes involved in regulation of the cell-membrane lipid-receptor LRP6 and inflammatory cytokines (CXCL8, IL6, and TNF). These predictions were experimentally proven in human macrophages and endothelial cells transfected with agomiR-133a.

Conclusion: Elevated levels of miR-133a in the circulation anticipate those FH patients that are going to present a clinical CVE within the next 2 years (average). Mechanistically, miR-133a is directly related with lipid- and inflammatory signalling in key cells for atherosclerosis progression.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvaa039DOI Listing

Publication Analysis

Top Keywords

familial hypercholesterolaemia
8
fh-cve fh-ncve
8
patients
7
high mir-133a
4
mir-133a levels
4
levels circulation
4
circulation anticipates
4
anticipates presentation
4
presentation clinical
4
clinical events
4

Similar Publications

Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia.

Clin Chim Acta

January 2025

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:

Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is a genetic disease, usually with onset during childhood, characterized by elevated blood LDL cholesterol levels and potentially associated with severe cardiovascular complications. Concerning mutated genes in FH, such as , a small subset of FH patients presents a homozygous genotype, resulting in homozygous FH (HoFH) disease with a generally aggressive phenotype. Besides statins, ezetimibe and PCSK9 inhibitors, lomitapide (an anti-ApoB therapy) was also approved in 2012-2013 as an adjunctive treatment for HoFH.

View Article and Find Full Text PDF

Purpose Of Review: Patients with familial hypercholesterolemia have an elevated risk of premature atherosclerotic cardiovascular disease. Risks can be minimized through pharmacological and 'lifestyle' behavioral (low fat diet, physical activity) therapies, although therapeutic adherence is sub-optimal. Behavioral interventions to promote familial hypercholesterolemia therapy adherence should be informed by theory-based psychological determinants for maximal efficacy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia.

View Article and Find Full Text PDF

Despite the implementation of next-generation sequencing-based genetic testing on patients with clinical familial hypercholesterolemia (FH), most cases lack complete genetic characterization. We aim to investigate the utility of the polygenic risk score (PRS) in specifying the genetic background of patients from the Latvian Registry of FH (LRFH). We analyzed the whole-genome sequencing (WGS) data of the clinically diagnosed FH patients (n = 339) and controls selected from the Latvian reference population (n = 515).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!