A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-Cell Genomic Characterization Reveals the Cellular Reprogramming of the Gastric Tumor Microenvironment. | LitMetric

Purpose: The tumor microenvironment (TME) consists of a heterogenous cellular milieu that can influence cancer cell behavior. Its characteristics have an impact on treatments such as immunotherapy. These features can be revealed with single-cell RNA sequencing (scRNA-seq). We hypothesized that scRNA-seq analysis of gastric cancer together with paired normal tissue and peripheral blood mononuclear cells (PBMC) would identify critical elements of cellular deregulation not apparent with other approaches.

Experimental Design: scRNA-seq was conducted on seven patients with gastric cancer and one patient with intestinal metaplasia. We sequenced 56,167 cells comprising gastric cancer (32,407 cells), paired normal tissue (18,657 cells), and PBMCs (5,103 cells). Protein expression was validated by multiplex immunofluorescence.

Results: Tumor epithelium had copy number alterations, a distinct gene expression program from normal, with intratumor heterogeneity. Gastric cancer TME was significantly enriched for stromal cells, macrophages, dendritic cells (DC), and Tregs. TME-exclusive stromal cells expressed distinct extracellular matrix components than normal. Macrophages were transcriptionally heterogenous and did not conform to a binary M1/M2 paradigm. Tumor DCs had a unique gene expression program compared to PBMC DCs. TME-specific cytotoxic T cells were exhausted with two heterogenous subsets. Helper, cytotoxic T, Treg, and NK cells expressed multiple immune checkpoint or co-stimulatory molecules. Receptor-ligand analysis revealed TME-exclusive intercellular communication.

Conclusions: Single-cell gene expression studies revealed widespread reprogramming across multiple cellular elements in the gastric cancer TME. Cellular remodeling was delineated by changes in cell numbers, transcriptional states, and intercellular interactions. This characterization facilitates understanding of tumor biology and enables identification of novel targets including for immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269843PMC
http://dx.doi.org/10.1158/1078-0432.CCR-19-3231DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
gene expression
12
cells
10
tumor microenvironment
8
paired normal
8
normal tissue
8
expression program
8
cancer tme
8
stromal cells
8
cells expressed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!