RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used transcription assays to study purified WT and mutant Pol I variants from the yeast and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152749PMC
http://dx.doi.org/10.1074/jbc.RA119.011827DOI Listing

Publication Analysis

Top Keywords

pol
15
passage nucleosomes
12
rna polymerase
8
polymerase pol
8
pol passage
8
pol pol
8
pol iii
8
nucleosomes
4
nucleosomes depends
4
depends pol
4

Similar Publications

Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci

December 2024

Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.

This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.

View Article and Find Full Text PDF

Real-world effectiveness and safety of bulevirtide monotherapy for up to 96 weeks in patients with HDV-related cirrhosis.

J Hepatol

January 2025

Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917). Electronic address:

Background And Aims: Bulevirtide (BLV) 2 mg/day is EMA approved for treatment of compensated chronic hepatitis due to Delta virus (HDV) infection, however real-life data in large cohorts of patients with cirrhosis are lacking.

Methods: Consecutive HDV-infected patients with cirrhosis starting BLV 2 mg/day since September 2019 were included in a European retrospective multicenter real-life study (SAVE-D). Patient characteristics before and during BLV treatment were collected.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!