Formaldehyde is a highly reactive compound that participates in multiple spontaneous reactions, but these are mostly deleterious and damage cellular components. In contrast, the spontaneous condensation of formaldehyde with tetrahydrofolate (THF) has been proposed to contribute to the assimilation of this intermediate during growth on C carbon sources such as methanol. However, the rate of this condensation reaction is unknown and its possible contribution to growth remains elusive. Here, we used microbial platforms to assess the rate of this condensation in the cellular environment. We constructed strains lacking the enzymes that naturally produce 5,10-methylene-THF. These strains were able to grow on minimal medium only when equipped with a sarcosine (-methyl-glycine) oxidation pathway that sustained a high cellular concentration of formaldehyde, which spontaneously reacts with THF to produce 5,10-methylene-THF. We used flux balance analysis to derive the rate of the spontaneous condensation from the observed growth rate. According to this, we calculated that a microorganism obtaining its entire biomass via the spontaneous condensation of formaldehyde with THF would have a doubling time of more than three weeks. Hence, this spontaneous reaction is unlikely to serve as an effective route for formaldehyde assimilation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073904 | PMC |
http://dx.doi.org/10.3390/metabo10020065 | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
In this study, waste polystyrene was modified and upgraded to prepare formylated polystyrene, and the modified polystyrene acetyl hydrazone (LT-HPA) was synthesized by condensation with polymethyl-propionyl-hydrazine. It is proven that the modification of the adsorption material is successful by various characterization methods. In the subsequent pollutant removal study, pH, mass, concentration, contact time, and salt ion interference were investigated.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
"Coriolan Drăgulescu" Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania.
The European Union regards gallium as a crucial element. Because of that, the retrieval of gallium ions from secondary sources through diverse methodologies is of the utmost significance in an actual economical context. The primary goal of this study was to explore the viability of MgFeO spinel as an adsorbent material for Ga(III) ions recovery from aqueous solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!