Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee.

Sci Total Environ

State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China. Electronic address:

Published: May 2020

There is clear evidence of severe honeybee declines in recent years, and parallel declines of plant community and crop productivity that rely on them. Different stresses, including heat stress, are among the primary drivers of this decline. However, the mechanisms by which honeybees respond to heat stress are elusive. Though heat shock proteins (Hsps) play important roles in heat stress response, the function of DnaJs (a subfamily of Hsps) is unclear. Here, we aimed to determine the underlying regulatory mechanism of honeybees to heat stress mediated by DnaJs. We found that several DnaJ genes, including DnaJA1, DnaJB12 and DnaJC8, are key for honeybee heat tolerance. DnaJA1 and DnaJB12 are cytoplasmic proteins, and DnaJC8 is a nuclear protein. The expression of DnaJA1, DnaJB12 and DnaJC8 was induced at different levels under short-term and long-term heat stress. Phenotypic analysis indicated that DnaJA1, DnaJB12 and DnaJC8 knockdown attenuated honeybee heat resistance. In addition, DnaJA1 participated in the heat stress response by upregulating many heat-inducible genes at the transcriptome-wide level, especially LOC108002668 and LOC107995148. Importantly, the upregulation of LOC108002668 and LOC107995148 was significantly repressed under heat stress when DnaJA1 was knocked down. We also found that knockdown of DnaJA1, DnaJB12 and DnaJC8 decreased antioxidant defense ability and increased the degree of oxidative damage in the honeybee. Taken together, our results indicate that DnaJ genes play important roles under heat stress in the honeybee. Overexpression of DnaJ genes may protect honeybees from heat stress-induced injuries and increase their survival rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137036DOI Listing

Publication Analysis

Top Keywords

heat stress
32
dnaja1 dnajb12
20
dnajb12 dnajc8
16
heat
13
dnaj genes
12
underlying regulatory
8
regulatory mechanism
8
heat tolerance
8
stress
8
play roles
8

Similar Publications

OsMAINTENANCE OF MERISTEM LIKE 1 controls style number at high temperatures in rice.

Plant Mol Biol

January 2025

Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy.

OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas.

View Article and Find Full Text PDF

The effects of aerobic exercise and heat stress on the unbound fraction of caffeine.

Front Physiol

January 2025

Human Physiology Research Unit, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.

Introduction: The fraction of drug circulating in the blood that is not bound to plasma proteins ( ) is considered pharmacologically active since it readily binds to its receptor. evidence suggests that changes in temperature and pH affect the affinity of drug binding to plasma proteins, resulting in changes in . In light of the well-established effects of exercise on body temperature and blood pH, we investigated whether an increase in blood temperature and decrease in pH facilitated through passive heating and exercise translated to a change in the of caffeine.

View Article and Find Full Text PDF

The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics.

View Article and Find Full Text PDF

Thermo-sensitive polycaprolactone coacervates for preventing protein aggregation under thermal stress.

J Mater Chem B

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Inspired from heat shock proteins (HSPs), a thermo-sensitive coacervate-forming polycaprolactone (CPCL) was designed as a natural chaperone mimic to protect proteins from thermal stress. Unlike the coil-globule polymers of poly(-isopropyl acrylamide) (PNIPAM), the as-designed CPCL underwent a partial dehydration during heating, characterizing it as a coacervate-forming polymer. With its ability to transform between the coil and coacervate states in response to temperature, theCPCL spontaneously captured and released targeted proteins, thereby behaving like a natural chaperone of HSPs.

View Article and Find Full Text PDF

In recent decades, the global climate has changed mainly due to human-induced causes and realizing their manifestations in the forms of extreme events such as droughts, floods, heat stress, and variability in rainfall. Arid and semi-arid ecosystems are sensitive to changes in climate variability, including the Borana zone. This study was therefore initiated to assess how vulnerable pastoral and agro-pastoral livelihoods are to climate change, as well as to estimate the effects, and pinpoint potential response measures that could be implemented in the study area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!