Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles.

Water Res

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, PR China; Center of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK. Electronic address:

Published: April 2020

In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication. The results indicated that after the application of O nanobubbles, the %MeHg (ratio of MeHg to total Hg) in the overlying water and surface sediment decreased by up to 76% and 56% respectively. In addition, the MeHg concentrations decreased from 0.54 ± 0.15 to 0.17 ± 0.01 ng L in the overlying water and from 56.61 ± 9.23 to 25.48 ± 4.08 ng g in the surface sediment. The decline could be attributed to the alleviation of anoxia and the decrease of labile organic matter and bioavailable Hg. In addition, hgcA gene abundances in the overlying water and surface sediment decreased by up to 69% and 44% after the addition of O nanobubbles, as is consistent with MeHg occurrence in such areas. Accordingly, this work proposed a promising strategy of using interfacial oxygen nanobubbles to alleviate the potentially enhanced MeHg production during algal bloom outbreaks in Hg-polluted eutrophic waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.115563DOI Listing

Publication Analysis

Top Keywords

overlying water
16
eutrophic waters
12
interfacial oxygen
12
oxygen nanobubbles
12
surface sediment
12
hg-polluted eutrophic
8
mehg production
8
organic matter
8
water surface
8
sediment decreased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!