Endometriosis is a chronic inflammatory disease which is associated with aberrant chemokine expression. We have established a three-dimensional (3D) floating collagen gel culture of human endometriotic cyst stromal cells (ECSCs) as an in vitro model of early-stage fibrosis formation in endometriosis. We evaluated the gene expression profiles of 3D-cultured ECSCs using a gene expression microarray. We identified and confirmed with reverse transcription-polymerase chain reaction that mRNA levels of CXCL1, CXCL2, CXCL3, CXCL8, and CCL20 in 3D-cultured ECSCs were significantly higher than in 2D-cultured ECSCs. The protein levels of CXCL1, CXCL2, CXCL8, and CCL20 in the supernatant of 3D-cultured ECSCs were significantly higher than in 2D-cultured ECSCs. It has been suggested that the 3D-culture model of ECSCs is more suitable for in vitro endometriosis research than 2D-culture. This microarray data provides a new platform to identify the candidate genes involved in the pathogenesis of endometriosis which could be masked in conventional 2D-culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jri.2020.103100DOI Listing

Publication Analysis

Top Keywords

3d-cultured ecscs
12
chemokine expression
8
expression profiles
8
stromal cells
8
gene expression
8
levels cxcl1
8
cxcl1 cxcl2
8
cxcl8 ccl20
8
ecscs higher
8
higher 2d-cultured
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!