A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation. | LitMetric

Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation.

Macromol Biosci

Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan.

Published: April 2020

Polyrotaxanes, consisting of poly(ethylene glycol) and α-cyclodextrins, are mechanically interlocked supermolecules. The structure allows α-cyclodextrins to move along the polymer, referred to as molecular mobility. Here, polyrotaxane-based triblock copolymers, composed of polyrotaxanes with different degrees of methylation and poly(benzyl methacrylate) at both terminals, are coated on culture surfaces to fabricate dynamic biointerfaces for myocyte differentiation. The molecular mobility increases with the degree of methylation and the contact angle hysteresis of water droplets and air bubbles. When the mouse myoblast cell line C2C12 is cultured on methylated polyrotaxane surfaces, the expression levels of myogenesis-related genes, myogenin (Myog) and myosin heavy chain (Myhc) are altered by the degree of methylation. Polyrotaxane surfaces with intermediate degrees of methylation promote the highest expression levels among all the surfaces. The polyrotaxane surface provides an appropriate environment for myocyte differentiation by accurately adjusting the degrees of methylation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201900424DOI Listing

Publication Analysis

Top Keywords

polyrotaxane surfaces
12
myocyte differentiation
12
degrees methylation
12
molecular mobility
8
degree methylation
8
expression levels
8
surfaces
5
methylation
5
mobility tuning
4
polyrotaxane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!