Omni-directional, ultra-small-angle x-ray scattering imaging provides a method to measure the orientation of micro-structures without having to resolve them. In this letter, we use single-photon localization with the Timepix3 chip to demonstrate, to the best of our knowledge, the first laboratory-based implementation of single-shot, omni-directional x-ray scattering imaging using the beam-tracking technique. The setup allows a fast and accurate retrieval of the scattering signal using a simple absorption mask. We suggest that our new approach may enable faster laboratory-based tensor tomography and could be used for energy-resolved x-ray scattering imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.381420DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
16
scattering imaging
16
single-shot omni-directional
8
omni-directional x-ray
8
single-photon localization
8
scattering
5
x-ray
4
imaging
4
imaging laboratory
4
laboratory source
4

Similar Publications

Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Background: The peroneal artery is known to give branches to the anterior and posterior tibial arteries. Scattered reports in the literature over the last decade failed to provide solid evidence as to the optimum strategy for below-knee targeted revascularization in limited-option patients with critical limb-treating ischemia (CLTI). We sought to determine the benefit of performing single peroneal tibial artery angioplasty revascularization compared with single non-peroneal angiosome-targeted tibial artery angioplasty revascularization for patients presented with CLTI.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!