An 852 nm semiconductor laser is experimentally subjected to phase-conjugate time-delayed feedback achieved through four-wave mixing in a photorefractive ($ {{\rm BaTiO}_{3}} $BaTiO) crystal. Permutation entropy (PE) is used to uncover distinctive temporal signatures corresponding to the sub-harmonics of the round-trip time and the relaxation oscillations. Complex spatiotemporal outputs with high PE mostly upwards of $ \sim 0.85 $∼0.85 and chaos bandwidth (BW) up to $ \sim 31\;{\rm GHz} $∼31GHz are observed over feedback strengths up to 7%. The low-feedback region counterintuitively exhibits spatiotemporal reorganization, and the variation in the chaos BW is restricted within a small range of 1.66 GHz, marking the transition between the dynamics driven by the relaxation oscillations and the external cavity round-trip time. The immunity of the chaos BW and the complexity against such spatiotemporal reorganization show promise as an excellent candidate for secure communication applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.383557 | DOI Listing |
Sci Rep
December 2024
Faculty of Sports and Exercise Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Wheelchair propulsion is a fundamental skill in wheelchair sports, particularly in wheelchair tennis. To achieve optimal mobility during wheelchair athletic performance, it is essential to consider propulsion techniques. This study examines the effect of push frequency and stroke duration on wheelchair maneuverability, measured by velocity during propulsion, among wheelchair tennis athletes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India. Electronic address:
Rechargeable zinc-air batteries (ZABs) with high-performance and stability is desirable for encouraging the transition of the technology from academia to industries. However, achieving this balance remains a formidable challenge, primarily due to the requirement of robust, earth-abundant reversible oxygen electrocatalyst. The present study introduces a simple strategy to synthesize Co-N rich nanoalloy with N-doped porous carbon tubes (NiCo@NPCTs).
View Article and Find Full Text PDFBackground: Health care emissions account for approximately 8.5% of total US domestic greenhouse gas emissions. Staff member and patient travel is the largest contributor to dental office-related emissions, and this number has been increasing.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Geodesy and Geoinformation, TU Wien-Vienna University of Technology, 1040 Vienna, Austria.
"Smart" devices, such as contemporary smartphones and PDAs (Personal Digital Assistance), play a significant role in our daily live, be it for navigation or location-based services (LBSs). In this paper, the use of Ultra-Wide Band (UWB) and Wireless Fidelity (Wi-Fi) based on RTT (Round-Trip Time) measurements is investigated for pedestrian user localization. For this purpose, several scenarios are designed either using real observation or simulated data.
View Article and Find Full Text PDFNanophotonics
April 2024
TUM School of Computation, Information and Technology, Technical University of Munich (TUM), D-85748 Garching, Germany.
In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!