Acquiring full control over a large number of diffraction orders can be strongly attractive in the case of realizing multifunctional devices such as multichannel reflectors. Recently, the concept of metagrating has been introduced, which enables obtaining the desired diffraction pattern through a sparse periodic array of engineered scatterers. In this Letter, for the first time, to the best of our knowledge, a tunable all-graphene multichannel meta-reflector is proposed for operating at terahertz (THz) frequencies. In the supercell level, the designed metagrating is composed of three graphene ribbons of different controllable chemical potentials which can be regarded as a five-channel THz meta-reflector. By choosing proper distribution of DC voltages feeding the ribbons, our design can realize different intriguing functionalities such as anomalous reflection, retroreflection, and three-channel power splitting within a single shared aperture and with high efficiency. This Letter paves the way toward designing highly efficient and tunable THz multichannel meta-reflectors with many potential applications in photonics and optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.383001DOI Listing

Publication Analysis

Top Keywords

real-time terahertz
4
terahertz wave
4
wave channeling
4
channeling multifunctional
4
multifunctional metagratings
4
metagratings sparse
4
sparse array
4
array all-graphene
4
all-graphene scatterers
4
scatterers acquiring
4

Similar Publications

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

As the importance of hygiene and safety management in food manufacturing has been increasingly emphasized, research on non-destructive and non-contact inspection technologies has become more active. This study proposes a real-time and non-destructive food inspection system with sub-terahertz waves which penetrates non-conducting materials by using a frequency of 0.1 THz.

View Article and Find Full Text PDF

The current state-of-the art in pharmaceutical continuous film coating - A review.

Int J Pharm

December 2024

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release.

View Article and Find Full Text PDF

Traditional imaging systems struggle in weak or complex lighting environments due to their fixed spectral responses, resulting in spectral mismatches and degraded image quality. To address these challenges, a bioinspired adaptive broadband image sensor is developed. This innovative sensor leverages a meticulously designed type-I heterojunction alignment of 0D perovskite quantum dots (PQDs) and 2D black phosphorus (BP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!