Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route.

Int J Biol Macromol

NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata 700053, West Bengal, India. Electronic address:

Published: May 2020

The major complications associated with the administration of ocular dosage forms are the precorneal loss due to the nasolacrimal drainage and high turnover of tear fluid. In situ forming gels are developed to overcome these complications. In situ gelling systems are polymeric solutions converted into a viscoelastic gel in the ocular surface due to a change in temperature, ionic strength, and p. Recently, the use of responsive polysaccharides containing in situ gel formulation has increased due to its biocompatible nature, non-toxicity, and biodegradability. The research on in situ gel using polysaccharide in the delivery of drug molecules through the ocular route has diversified in various fields. However, there is no report are available that summaries this progress. The aim of this article is to bridge that lacuna. We discuss different polysaccharides based in situ gel including pH, temperature, ion and multiple sensitive used in ocular drug delivery. The nanoformulation incorporated polysaccharide in situ gels for ocular drug delivery has also been highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.097DOI Listing

Publication Analysis

Top Keywords

situ gel
16
delivery drug
8
ocular route
8
ocular drug
8
drug delivery
8
situ
7
ocular
6
gel
5
polysaccharide renewable
4
renewable responsive
4

Similar Publications

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Background: A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis.

View Article and Find Full Text PDF

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!