There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2019.101632 | DOI Listing |
Front Microbiol
December 2024
Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States.
Introduction: (), one of the most prevalent blue-green algae in aquatic environments, produces microcystin by causing harmful algal blooms (HAB). This study investigated the combined effects of nutrients and cyanobacterial subpopulation competition on synthesizing microcystin-LR.
Method: In varied nitrogen and phosphorus concentrations, cyanobacterial coculture, and algicidal DCMU presence, the growth was monitored by optical density analysis or microscopic counting, and the microcystin production was analyzed using high-performance liquid chromatography-UV.
Harmful Algae
December 2024
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, 27483 Helgoland, Germany.
The marine dinoflagellate Alexandrium pseudogonyaulax is a widely distributed Harmful Algal Bloom (HAB) species that produces the macrocyclic polyketide goniodomin A (GDA). Occurrences in northern European waters are increasing and a spreading of the species along a salinity gradient into the Baltic Sea has been observed. As GDA is suspected to lead to invertebrate mortality, the spreading is of concern for the environment and possibly human health.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Bielefeld University, Faculty of Business Administration and Economics, Universitätsstraße 25, 33615 Bielefeld, Germany; Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Im Technologiepark 5, 26129 Oldenburg, Germany; Fraunhofer Center for International Management and Knowledge Economy IMW, Leipziger Straße 70/71, 06108 Halle (Saale), Germany.
Environmental decision-making is inherently subject to uncertainty. However, decisions are often urgent, and whether to take direct action or invest in collecting additional data beforehand is pervasive. To make this trade-off explicit, the value of information (VoI) theory offers a powerful decision analytic tool to quantify the expected benefit of resolving uncertainty in a decision context.
View Article and Find Full Text PDFMar Drugs
November 2024
Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China.
Water Res
January 2025
School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 02504, Republic of Korea. Electronic address:
Global increases in the occurrence of harmful algal blooms (HABs) are of major concern in water quality and resource management. A predictive model capable of quantifying the spatiotemporal associations between HABs and their influencing factors is required for effective preventive management. In this study, a feature stream network (FSN) model is proposed to provide daily forecasts of cyanobacteria abundance at multiple monitoring sites simultaneously in a river network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!