β-Tryptase, a homotetrameric serine protease, has four identical active sites facing a central pore, presenting an optimized setting for the rational design of bivalent inhibitors that bridge two adjacent sites. Using diol, hydroxymethyl phenols or benzoyl methyl hydroxamates, and boronic acid chemistries to reversibly join two [3-(1-acylpiperidin-4-yl)phenyl]methanamine core ligands, we have successfully produced a series of self-assembling heterodimeric inhibitors. These heterodimeric tryptase inhibitors demonstrate superior activity compared to monomeric modes of inhibition. X-ray crystallography validated the dimeric mechanism of inhibition, and compounds demonstrated high selectivity against related proteases, good target engagement, and tryptase inhibition in HMC1 xenograft models. Screening 3872 possible combinations from 44 boronic acid and 88 diol derivatives revealed several combinations that produced nanomolar inhibition, and seven unique pairs produced greater than 100-fold improvement in potency over monomeric inhibition. These heterodimeric tryptase inhibitors demonstrate the power of target-driven combinatorial chemistry to deliver bivalent drugs in a small molecule form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.9b01689 | DOI Listing |
ACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFChemMedChem
December 2024
East China University of Science and Technology School of Pharmacy, Department of Pharmaceutical Sciences, 130 Meilong Rd., 200237, Shanghai, CHINA.
The expression of Klebsiella pneumoniae carbapenemase (KPC), a type of carbapenem-hydrolyzing β-lactamase, in Gram-negative bacteria has caused significant bacterial resistance to carbapenems, the antibiotic of last resort. Herein, we describe the discovery of 2-carboxyquinoline boronic acids as inhibitor of KPC. We have identified fluoro-substituted carboxyquinoline boronic acids 1e as the most potent inhibitor, with an IC50 of 8.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Organ Transplantation, Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, Guangxi, China.
Objective: This study aims to assess the efficacy of pharmacological interventions in mitigating graft injury in transplant patients with antibody-mediated rejection (AMR) through a network meta-analysis (NMA).
Methods: A search was conducted on databases such as Cochrane Library, PubMed, EmBase, and Web of Science for randomized controlled trials (RCTs) on pharmacological interventions for alleviating graft injury following AMR. The search was performed for publications up to April 12, 2024.
ACS Catal
December 2024
Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
Genetically encoded noncanonical amino acids can introduce new-to-nature activation modes into enzymes. While these amino acids can act as catalysts on their own due to their inherent chemical properties, interactions with adjacent residues in an enzyme, such as those present in natural catalytic dyads or triads, unlock a higher potential for designer enzymes. We incorporated a boron-containing amino acid into the protein scaffold RamR to create an active enzyme for the kinetic resolution of α-hydroxythioesters.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.
Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!