Classical swine fever is a world organization for animal health listed disease and is caused by classical swine fever virus (CSFV). CSFV can induced unfolded protein response (UPR) and whether NS5A protein plays a role in this process remains unknown. Here, we demonstrate that CSFV induced all the three signal pathways ATF6, IRE1 and PERK of UPR. Furthermore, this phenomenon may be mediated by the NS5A protein since expression of NS5A alone can achieve the same effect. In the current study, we show that NS5A can interact with GRP78 as measured by using the CO-IP and GST pulldown assays. This interaction plays a positive role in the promotion of CSFV replication. Overexpression or knockdown of GRP78 mediated by lentivirus can enhance or decrease viral replication, respectively. Our findings provide the evidence that CSFV infection can activate the cellular UPRs, in which NS5A and GRP78 play key roles in the process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2019.12.006DOI Listing

Publication Analysis

Top Keywords

unfolded protein
8
protein response
8
viral replication
8
classical swine
8
swine fever
8
csfv induced
8
ns5a protein
8
csfv
6
ns5a
6
csfv protein
4

Similar Publications

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

Virtual screening of potential inhibitors of the ATPase site in Acinetobacter baumannii DNA Gyrase.

Comput Biol Med

January 2025

Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:

Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.

View Article and Find Full Text PDF

The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!