Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis.

Curr Pharm Des

Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil

Published: December 2020

Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612826666200214161139DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
underlying molecular
8
ameliorative effects
4
effects cellular
4
cellular aspects
4
aspects phytoconstituents
4
atherosclerosis
4
phytoconstituents atherosclerosis
4
atherosclerosis atherosclerosis
4
atherosclerosis cardiovascular
4

Similar Publications

The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.

View Article and Find Full Text PDF

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Background: Shengyang Yiwei Decoction showed efficacy in idiopathic membranous nephropathy treatment, and this study aimed to assess the underlying molecular mechanisms.

Methods: Rats with passive Heymann nephritis were divided into the model group, the Shengyang Yiwei Decoction group, the JAK2 inhibitor group, and the STAT3 inhibitor group. Healthy rats served as the normal control.

View Article and Find Full Text PDF

Biphasic Coacervation Controlled by Kinetics as Studied by De Novo-Designed Peptides.

Langmuir

January 2025

Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!