Background: Development of platelet precursor cells, megakaryocytes (MKs), implies an increase in their size; formation of the elaborate demarcation membrane system (DMS); and extension of branched cytoplasmic structures, proplatelets, that will release platelets. The membrane source(s) for MK expansion and proplatelet formation have remained elusive.
Objective: We hypothesized that traffic of membranes regulated by phosphatidylinositol 3-monophosphate (PI3P) contributes to MK maturation and proplatelet formation.
Results: In immature MKs, PI3P produced by the lipid kinase Vps34 is confined to perinuclear early endosomes (EE), while in mature MKs PI3P shifts to late endosomes and lysosomes (LE/Lys). PI3P partially colocalized with the plasma membrane marker phosphatidylinositol 4,5-bisphosphate (PI(4,5)P ) and with LE/Lys in mature MKs, suggests that PI3P-containing LE/Lys membranes contribute to MK expansion and proplatelet formation. Consistently, we found that sequestration of PI3P, specific pharmacological inhibition of Vps34-mediated PI3P production, or depletion of PI3P by PI3-phosphatase (MTM1)-mediated hydrolysis potently blocked proplatelet formation. Moreover, Vps34 inhibition led to the intracellular accumulation of enlarged LE/Lys, and decreased expression of surface LE/Lys markers. Inhibiting Vps34 at earlier MK stages caused aberrant DMS development. Finally, inhibition of LE/Lys membrane fusion by a dominant negative mutant of the small GTPase Rab7 or pharmacological inhibition of PI3P conversion into PI(3,5)P led to enlarged LE/Lys, reduced surface levels of LE/Lys markers, and decreased proplatelet formation.
Conclusion: Our results suggest that PI3P-positive LE/Lys contribute to the membrane growth and proplatelet formation in MKs by their translocation to the cell periphery and fusion with the plasma membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jth.14764 | DOI Listing |
Thromb Haemost
December 2024
Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand.
Background: Megakaryocytes (MK) from Bernard-Soulier syndrome (BSS) induced pluripotent stem cells (iPSCs) yielded reduced numbers but increased sizes of platelets. The molecular mechanisms remain unclear. This study aims to determine roles of signaling molecules involved in this process.
View Article and Find Full Text PDFStem Cell Res Ther
November 2024
Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
Br J Pharmacol
November 2024
The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background And Purpose: The CAPEOX (combination of oxaliplatin and capecitabine) chemotherapy protocol is widely used for colorectal cancer treatment, but it can lead to chemotherapy-induced adverse effects (CRAEs).
Experimental Approach: To uncover the mechanisms and potential biomarkers for CRAE susceptibility, we performed whole-genome sequencing on normal colorectal tissue (CRT) before adjuvant chemotherapy. This is followed by in vivo and in vitro verifications for selected gene and CRAE pair.
Biochem Med (Zagreb)
October 2024
Institute of General Medicine, Samara State Medical University of the Ministry of Health of the Russian Federation, Samara, Russia.
Structural and functional alterations in platelets are an actual problem that requires more attention. The treatment of these illnesses proves challenging, inefficient and heavily relies on platelet donations. A difficult task confronting science is producing platelets , which calls for meticulous examination of factors affecting platelet generation.
View Article and Find Full Text PDFBlood
November 2024
School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.
Platelets play crucial roles in hemostasis, thrombosis, and immunity, but our understanding of their complex biogenesis (thrombopoiesis) is currently incomplete. Deeper insight into the mechanisms of platelet biogenesis inside and outside the body is fundamental for managing hematological disorders and for the development of novel cell-based therapies. In this article, we address the current understanding of in vivo thrombopoiesis, including mechanisms of platelet generation from megakaryocytes (proplatelet formation, cytoplasmic fragmentation, and membrane budding) and their physiological location.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!