The objective was to evaluate the effect of inclusion of 2.5% and 5% ovine serum, enriched with vitamin E (Vit E) and fish oil (FO), in human sperm freezing medium. Serum samples were prepared from sixteen rams (n = 4) feeding on a without supplemented diet, and diets supplemented with Vit E, FO and Vit E + FO. Semen samples, from 60 normozoospermic men, were frozen in: (I) a commercial freezing medium (SpermFreeze™; control medium), (II) the commercial freezing medium containing foetal bovine serum, (III) the commercial freezing medium + nonenriched serum (serum group), (IV) the commercial freezing medium + Vit E enriched serum (Vit E group), (V) the commercial freezing medium + FO enriched serum (FO group) and (VI) the commercial freezing medium + Vit E + FO enriched serum (Vit E + FO group). Sperm total and progressive motility, morphology, viability and plasma membrane integrity were significantly higher (p ≤ .05) in Vit E and Vit E + FO groups compared with the control group. Mitochondrial membrane potential did not differ between treatments (p > .05). It was concluded that ovine serum enriched with vitamin E and vitamin E + FO improved the quality of human spermatozoa but enriched serum containing FO could not improve the sperm cryo-injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.13541DOI Listing

Publication Analysis

Top Keywords

commercial freezing
24
enriched serum
20
freezing medium
16
vit e + fo
12
group commercial
12
serum
11
freezing
8
ovine serum
8
serum enriched
8
enriched vitamin
8

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

Although eicosapentaenoic acid (EPA) as a functional fatty acid has shown significant benefits for human health, its susceptibility to oxidation significantly limits its application. In this study, we developed a nanoemulsion of the lactoferrin (LTF)-EPA complex and conducted a thorough investigation of its macro- and molecular properties. By characterizing the emulsion with different LTF concentrations, we found that 1.

View Article and Find Full Text PDF

Defects can be introduced into shotcrete materials after a few freeze-thaw cycles, which has a significant influence on the fracture performance of shotcrete. In this study, a series of shotcrete specimens with varying sizes, geometries, and initial crack lengths were prepared to investigate the fracture properties of notched shotcrete under freeze-thaw conditions. Considering the effects of specimen boundaries and material microstructure, a linear closed-form solution was proposed to determine the fracture toughness of frost-damaged shotcrete.

View Article and Find Full Text PDF

Reexamining the Enhanced Solubility of Sodium Laurate/Sodium Oleate Eutectic Mixtures.

Langmuir

January 2025

Unilever R&D, 40 Merrit Boulevard, Trumbull, Connecticut 06611, United States.

Mixtures of multiple surfactants that have superior performance to the individual components are highly sought-after commercially. Mixtures with a reduced Krafft point () are particularly useful as they enable applications at lower temperatures. Such an example is the soap maker's eutectic: the mixture of sodium laurate (NaL) and sodium oleate (NaOl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!