A paper based sensor array is presented to discriminate and determine five mycotoxins classified into three categories, namely aflatoxins, ochratoxins and zearalenone. The gold and silver nanoparticles, synthesized by three different reducing or capping agents, were employed as sensing elements of the fabricated device. These nanoparticles were poured onto hydrophilic circular zones embedded on the hydrophobic substrate. The response of the assay is dependent on the aggregation of nanoparticles for interaction with mycotoxins. Due to aggregation, the gold and silver nanoparticles changed to purple and brown, respectively. Color changes provide unique colorimetric signatures conducive to recognizing the type of mycotoxin, identifying its chemical structure, and finding the fungi that produce it. The discrimination ability of the assay was investigated by both supervised (linear discriminate analysis) and unsupervised (principle component analysis and hierarchical cluster analysis) pattern recognition methods. The assay was applied to the point of need determination of aflatoxin B1, aflatoxin G1, aflatoxin M1, ochratoxin A and zearalenone with a detection limit of 2.7, 7.3, 2.1, 3.3 and 7.0 ng.mL, respectively. The fabricated device has high potential of simultaneously determining the mycotoxins in pistachio, wheat, coffee and milk with the help of partial least square method. The root mean square errors for prediction of PLS model were 5.7, 5.2, 1.5, 7.2 and 2.9 for aflatoxin B1, aflatoxin G1, aflatoxin M1, ochratoxin A and zearalenone, respectively. Graphical abstractSchematic representation of paper based colorimetric sensor array based on gold and silver nanoparticles for both qualitative and quantitative analysis of aflatoxins, ochratoxin and zearalenone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-4147-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!